地下管道检测机器人设计doc

文章来源:新闻中心 2023-09-10

  按照行路机构的类型,可将管内作业机器人行路机构分为轮式、履带式、蠕动式等几类。

  轮式机构管内作业机器人的基本形式如图1(a)所示。对此类机器人的研究相对较多。机器人在管内的运动,有直进式的(即机器人在管内平动),也有螺旋运动式的(即机器人在管内一边向前运动,一边绕管道轴线转动);轮的布置有平面的,也有空间的。一般认为,平面结构的机器人结构简单,动

  作灵活,但刚性、稳定性较差,而空间多轮支撑结构的机器人稳定性、刚性较好, 但对弯管和支岔管的通过性不佳。图1(b)为英国的PEARPOINT有限公司开发的自来水管道检测轮式机器人,可在以φ135~375mm的管径内直线m/min。

  图2(a)是履带式行路机构的基本形式。这种类型的管内机器人在油污、泥泞、障碍等恶劣条件下达能到良好的行走状态, 但由于结构较为复杂,不易小型化,转向性能不如轮式载体等原因,此类机器人应用较少。图2(b)是日本关西电力株式会社开发的适用于管径Φ288~388mm、管长100m的海水管道检查履带式机器人,该机器人通过沿径向分布的履带在水平管和垂直管内自主行走,移动速度为5m/min。整个地下输气管道检测维修用移动机器人系统由三大部分组成:

  (2)圆盘式收放线装置。移动机器人通过电缆来控制,视觉等信号也通过该线缆传输到控制计算机。

  (3)控制单元。其主体为一台工业控制计算机,负责整个机器人系统的控制、显示及信息存储等工作。操作人员通过界面完成所有操作。控制单元与收放线装置安装在一个专门设计的手推车体上,便于移动。

  蠕动式行路机构如图3所示。当头部支撑脚3 收缩脱离与管道内壁接触,尾部支撑脚1伸出与管壁接触压紧,气缸2左缸供气, 蠕动载体伸长, 带动头部向前移动;当头部移动到位时,支撑脚1缩回,头部支撑脚3伸出与管壁接触压紧,气缸2右缸供气,则蠕动载体收缩,带动尾部向前运动。尾部移动到位,尾部支撑脚1伸出,支撑管壁,头部支撑脚缩回。

  蠕动式管内移动机器人支撑脚的伸缩和载体的蠕动均采用直线运动,当支撑脚支承载体与管壁压紧,不支承时可以与管壁脱离,解决了轮式和履带式管内移动机器人行走时驱动轮始终压紧在管壁上的问题,可以产生很大的牵引力。但由于蠕动式移动机器人的运动是间歇的,受驱动件启动频率的限制,移动速度比轮式、履带式低。轮式驱动机构具有结构相对比较简单,容易实现,行走效率高等优点,主要缺点是牵引力的提高受到封闭力的限制。履带式载体附着性能好,越障能力强,并能输出较大的牵引力,但结构较为复杂,不易小型化,转向性能不如轮式载体。

  本项目是根据我们国家经济建设的实际需要而提出的一项亟待研究和解决的科研课题。地下管道(输水管道、煤气管道、供气管道)在长期使用的过程中,由于受到管内、管外介质的腐蚀等原因,会产生裂纹、漏孔而出现漏气、漏水现象,这不仅会造成巨大的经济损失,甚至会出现人身事故,为此迫切地需要一种能在管内行走的机器人来拖动或输送各种装置完成检测和维修工作。目前国外先进国家对地下管道的检测已开始采用管内移动机器人来完成,而国内主要是采用废弃旧损管线、铺设新管线的方法,或人工入管修复,这不仅耗资巨大,修复周期过长,而且劳动强度大。据我们在中国石油天然气总公司和国内各城市自来水公司、供热公司调研表明,国内现继续地下输气管道、输水管道检测用移动机器人。因此开展地下输水输气管道检测用移动机器人的研究,对能源工业的发展及减少水资源浪费具有重大的理论意义和现实意义。

  目前,国内外对涵管的检测主要采取人工观察测量、局部破损检验测试的办法。所研制的管道机器人大部分也是针对工业管道和细小的管道。由此,笔者尝试性地做了关于涵管检测机器人行路机构的初步探讨。

  根据汽车理论,机器人若能在管道中正常行走,则一定要满足下述条件,即式中, ——————驱动力; ——————为附着力,且= ,为附着系数。

  按照汽车的驱动理论原则,管道机器人的驱动方式选用后轮驱动的方式,并且由于工作条件对小车尺寸的要求,采用减速器装置,使电机的告诉输出轴连接在减速器输入轴上,然后通过减速器减速,并且把减速器的输出轴通过套筒式联轴器与一对锥齿轮和小车的后轴相连接,从而带动车轮转动。后轮轴的两端伸出部分安装上铸钢轮,为了附着性能,在铸钢轮的外面嵌入了橡

...
分享到
微信扫一扫
分享到朋友圈